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Introduction 

 
The scattering of light may be thought of as the redirection of light that takes place when 

an electromagnetic (EM) wave (i.e. an incident light ray) encounters an obstacle or non-

homogeneity, in our case the scattering particle.  As the EM wave interacts with the discrete 

particle, the electron orbits within the particle’s constituent molecules are perturbed periodically 

with the same frequency (o) as the electric field of the incident wave.  The oscillation or 

perturbation of the electron cloud results in a periodic separation of charge within the molecule, 

which is called an induced dipole moment.  The oscillating induced dipole moment is manifest as 

a source of EM radiation, thereby resulting in scattered light. The majority of light scattered by 

the particle is emitted at the identical frequency (o) of the incident light, a process referred to as 

elastic scattering.  In summary, the above comments describe the process of light scattering as a 

complex interaction between the incident EM wave and the molecular/atomic structure of the 

scattering object; hence light scattering is not simply a matter of incident photons or EM waves 

“bouncing” off the surface of an encountered object.  

 

 

 

 

 
 
 

Figure 1.  Light scattering by an induced dipole moment due to an incident EM wave. 
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Formal light scattering theory may be categorized in terms of two theoretical 

frameworks.  One is the theory of Rayleigh scattering (after Lord Rayleigh) that is, strictly 

speaking as originally formulated, applicable to small, dielectric (non-absorbing), spherical 

particles.  The second is the theory of Mie scattering (after Gustav Mie) that encompasses the 

general spherical scattering solution (absorbing or non-absorbing) without a particular bound on 

particle size.  Accordingly, Mie scattering theory has no size limitations and converges to the 

limit of geometric optics for large particles.  Mie theory, therefore, may be used for describing 

most spherical particle scattering systems, including Rayleigh scattering.  However, Rayleigh 

scattering theory is generally preferred if applicable, due to the complexity of the Mie scattering 

formulation.  The criteria for Rayleigh scattering is that <<1 and m<<1, where  is �the 

dimensionless size parameter given by the expression 

2 a


 ,                                                                                        (1) 

where a is the spherical particle radius, and  is the relative scattering wavelength defined as    

o

om

  ,                                                                                        (2) 

where o is the incident wavelength with respect to vacuum, and mo represents the refractive 

index of the surrounding medium.  Finally, m is the refractive index of the scattering particle, 

and is commonly represented by the complex notation defined as 

m = n - ik.                                                                                             (3) 

In this notation, n indicates the refraction of light (i.e. n equals the speed of light in vacuum 

divided by the speed of light in the material), while the complex term is related to absorption.  

The commonly used absorption coefficient of the material (cm-1) is related to the complex part of 

the refractive index via the relation 
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
4

tcoefficienabsorption . (4) 

It is noted that the value of k is never exactly zero for any material, but materials with a value 

approaching zero are termed dielectrics.  The magnitude of the refractive index, m , as needed 

for the Rayleigh criteria, is given by the expression 

  2/122  nm  .                                                                              (5) 

The Rayleigh criteria as related above, namely <<1 and m<<1, correspond physically to 

the assumptions that the particle is sufficiently small such that the particle encounters a uniform 

electric field at any moment, accordingly the time for penetration of the electric field is much 

less than the period of oscillation of the EM wave.    

Figure 1 shows the spherical coordinate scattering geometry used for Mie and Rayleigh 

light scattering corresponding to a single incident light ray on a single spherical particle.  Using 

this coordinate system, the scattering parameters may be defined for the Rayleigh and Mie 

solutions. 

 

 

 

 

 

 

 

 

Figure 2.  Coordinate geometry for Rayleigh and Mie scattering. 

z 

x 

y 





E


B


 

incS


 

scatS


 

om  

m



D.W.H.  July 2009 
 

 4

For each scattering angle (,), the Equations (6) and (7) represent the intensities 

(W/cm2) of scattered radiation vertically and horizontally polarized with respect to the scattering 

plane, respectively, which is defined by the incident ray (of intensity Io) and the scattered ray, 

noting the polarization state of the incident ray as shown in Figure 2, 

2
2

12 2
sin

4oI I i
r

 


 ,                                                (6) 

2
2

22 2
cos

4oI I i
r

 


 .                                      (7) 

For perfectly spherical particles, polarized incident radiation produces similarly polarized 

scattered radiation; hence the scattering problem may be redefined in terms of the polarization 

states with respect to the scattering plane.  Accordingly, equations (6) and (7) may be recast in 

terms of the differential scattering cross sections (cm2/sr), namely 

'
2

1
VVoVV r

II    (8) 

'
2

1
HHoHH r

II  . (9) 

In these two equations, the subscripts refer to the state of polarization of the incident and 

scattered light, respectively, with orientation defined by the scattering plane.  Specifically, the 

subscripts VV refer to both vertically polarized incident light and vertically polarized scattered 

light with respect to the scattering plane (i.e.  = 90o).  Similarly, the subscripts HH refer to both 

horizontally polarized incident light and horizontally polarized scattered light with respect to the 

scattering plane (i.e.  = 0o).  For unpolarized incident light, the scattering is given by the 

following  

'
2

1
scatoscat r

II   , (10) 
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where '
scat  is the average of '

VV  and '
HH , and noting there is no dependence on .  Finally, it 

is noted that the dependency of the above quantities on the scattering angle  is through the 

differential cross sections, as detailed below.  Equations 8-10 provide an expression for the 

intensity of light about a single scattered ray.  These equations may also be reconsidered in terms 

of the rate of scattered energy into a defined solid angle, as shown in Figure 3.  

 

 

 

 

 

 

 

 

Figure 3.  Angular scattering intensity. 

Using the differential scattering cross section, the total scattered energy rate (W) striking dA is 

 dIE scatoscat
'  , (11) 

where the solid angle d is related to the subtended area by d = dA/r2.  The units of equation 

(11) are readily apparent.  Substitution of dA/r2 for the solid angle and division of both sides by 

dA yields equation (10); hence the scattered intensity about the scattered ray Iscat. 

While the above equations account for the redistribution of incident radiation due to light 

scattering, incident radiation may also be absorbed by the particle.  The rate of the total amount 

of incident energy abstracted from the incident beam due to interactions with a single particle is 

calculated directly from the extinction cross section (cm2), 
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extoremoved IE  . (12) 

The extinction cross section represents loss of energy from the incident beam due to both 

scattering and absorption; hence the extinction cross section may be expressed as  

ext = abs + scat, (13) 

where abs and scat are the absorption and total scattering cross sections (cm2), respectively.  The 

latter quantity is calculated by integrating the differential cross section over 4 steradians.  While 

the above equations allow calculation of the relevant scattering and extinction quantities based 

on the incident light intensity, it now falls to the Rayleigh and Mie theories to provide the 

appropriate expressions for calculation of the various cross-sections expressed above. 

 

Rayleigh Theory 

In the Rayleigh regime, the differential scattering cross sections are readily calculated from 

the following equations: 

2

2

2

6
2

2
'

2

1

4 




m

m
VV 


 ,  (14) 

 2'' cosVVHH  . (15) 

Examination of equations (14) and (15) reveals several interesting items.  Functionally, the 

differential scattering cross sections are proportional to the 6th power of particle size, and are 

inversely proportional to the 4th power of wavelength.  This latter dependency gives rise to the 

blue color of our sky, as the air molecules (e.g. N2 and O2) are well within the Rayleigh regime; 

hence the shorter blue light of the sun is more efficiently redirected out of the direct path of 

sunlight and subsequently redirected from all directions as scattered light.  In addition, note that 

the vertical-vertical differential scattering cross section is independent of the observation 
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angle , while the horizontal-horizontal differential scattering cross section has a minimum at 

90o.  This implies that unpolarized light will be strongly polarized at 90o observation for 

Rayleigh particles. The total scattering cross section (cm2) and absorption cross section (cm2) are 

defined as 

2

2

2

6
2

2

1

3

2






m

m
sca 


 , (16) 


















2

1
Im

2

2

3
2

m

m
abs 


 . (17) 

Finally, the total extinction cross section (cm2) is defined as a sum of the scattering and 

absorption cross sections, namely, 

absscaext   . (18) 

As represented in equations (16) and (17), the scattering cross section scales with 6, while the 

absorption cross section is proportional to 3.  In the Rayleigh regime, the size parameter must 

be much less than unity, therefore the contribution of scattering (i.e. sca ) to the total extinction 

cross section is generally neglected for an absorbing particle ( 0k ), and it is therefore assumed 

that absext   .  However, for a dielectric particle ( 0k ), then scatext   , as the contribution 

of absorption is identically zero ( )0abs . 

 

Mie Theory 

Based on the theory of Mie, the differential scattering cross sections are defined in terms 

of the angular intensity functions i1 and i2, as given by the expressions 

12

2
'

4
iVV 

                              (19) 
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22

2
'

4
iHH 

  .                                         (20) 

As before, the above two equations are averaged to define the differential scattering cross section 

for unpolarized incident light, which gives the relation  

 )(
8 212

2
' iiscat 


                          (21) 

In this formulation, the intensity functions are calculated from the infinite series given by 

     
2

1
1

2 1
cos cos

1 n n n n
n

n
i a b

n n
   






    ,              (22) 

     
2

2
1

2 1
cos cos

1 n n n n
n

n
i a b

n n
   






    .                          (23) 

In the equations (22) and (23), the angular dependent functions n and n are expressed in terms 

of the Legendre polynomials by  

   (1) cos
cos

sin
n

n

P 
 


 , (24) 

   (1) cos
cos n

n

dP

d


 


 ,                  (25) 

where the parameters an and bn are defined as  

       
       

' '

' '
n n

n

n n
n

n n

m m m
a

m m m

   
     
    


  

, (26) 

       
       

' '

' '
n n

n

n n
n

n n

m m m
b

m m m

   
     
   


 

.               (27) 

The size parameter  is defined using Equations (1) and (2) as 

2 o

o

am


 .                                             (28) 
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The Ricatti-Bessel functions  and   are defined in terms of the half-integer-order Bessel 

function of the first kind (Jn+1/2(z)), where 

   
1

2

1 22n n

z
z J z




    
 

.                               (29) 

Equation (30) describes the parameter n 

       
1

2

1 22n n n n

z
z H z z i z

 
      
 

,                   (30) 

where Hn+1/2(z) is the half-integer-order Hankel function of the second kind, where the parameter 

Xn is defined in terms of the half-integer-order Bessel function of the second kind, Yn+1/2(z), 

namely 

   
1

2

1 22n n

z
z Y z




    
 

.                                (31) 

Finally, the total extinction and scattering cross sections are expressed as 

 





0

2

Re)12(
2 n

nnext ban

  (32) 







0

22
2

)()12(
2 n

nnscat ban

 , (33) 

noting that the absorption cross section is readily calculated from the above two. 
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Light Scattering Behavior 

 The following plots briefly depict the behavior of Mie and Rayleigh scattering for 

spherical particles for a range of conditions, including angular dependency and size dependency. 
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Figure 4.  This plot presents the differential scattering cross-section ( '

VV ) as a function of 

scattering angle  (see Figure 2), hence 0o is forward scattering and 180o is backscattering.  The 
smallest particle size of 17 nm ( = 0.1) is well within the Rayleigh regime, and therefore the 
angular dependence is negligible.  The 170 nm particle ( = 1.0) is departing from the Rayleigh 
regime, and therefore displays some angular variation, with forward scattering beginning to 
emerge.  Note, however, that the function is still monotonic.  The 1.7 m particle ( = 10) is 
clearly in the Mie regime, where forward scattering dominates.  However, note the strong 
“ripple” structure as a function of scattering angle.  This is characteristic of Mie scattering, and is 
due to the complex interactions of scattered and refracted rays that result in constructive and 
destructive interference along different paths (i.e. different scattering angles).  Note the scale 
factors in parentheses for the l7 nm and 1.7 m particle plots, hence these cross-sections vary by 
more than 10 orders of magnitude for the two-order of magnitude variation in particle size. 
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Figure 5.  This plot presents the extinction efficiency as a function of size parameter.  The 
extinction efficiency is the extinction cross section (ext) normalized by the geometric cross 
section (a2).  For Rayleigh sized particles, the extinction efficiency is much less than 1.  For 
particles in the Mie regime, two characteristics are noted.  The ripple or resonance structure 
observed in the angular scattering plot is also present with extinction, although not as 
pronounced.  In addition, the asymptotic limit of the above plot is 2, meaning that in the large 
particle limit, twice as much energy is removed as expected based on the geometric cross 
section.  This is contrary to observation, and is referred to as the extinction paradox.  In actuality, 
one half of the energy is removed by scattering/extinction, while the second half is removed via 
near-forward angle diffraction.  Since an observer generally “sees” the diffracted energy, it 
appears that a large particle only removes energy equal to its actual geometric cross-section.   
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Figure 6.  This plot presents the differential scattering cross section at a fixed angle of 15o for 
vertical-vertical scattering ( '

VV ) as a function of scattering particle diameter for various particle 

refractive indices.  Data are presented for a dielectric, as well as increasingly absorptive 
particles, and finally for a particle with enhanced refraction and absorption.  The main point 
illustrated from these plots is the complex nature of the dependency of Mie scattering on 
refractive index.  It is very difficult to make a priori assumptions about the relative magnitude of 
scattering for a given particle size and scattering angle with regard to the value of refractive 
index m.  
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